

11130 Session n° 3 : Meshes in contaminated fields Présentateur : Johan Lange (Rotterdam) Modérateurs : Jean-Luc Bouillot (Boulogne), Pablo Ortega Deballon (Dijon), Michel Prudhomme (Nimes), Pierre Verhaeghe (Reims)

How to keep in place an infected mesh ?

Y. RENARD, A. METTOUDI, J.P. PALOT

Introduction

Grade 2 Grade 3 Grade 1 Low Risk Low risk of Smoker A. Cleancomplications Obese Contaminated \rightarrow Mesh infection occurrence : 4-6% No history of B.Contaminated COPD wound infection C. Dirty • DM (depend on the number of risk factors of SSO) · History of wound infection SSO = 14% SSO = 27% SSO = 46%

→ More frequent (2-7%) and severe in ventral position

→ Economic and social impact

SYNTHETICS

Kanters AE. JACS. 2012 Berrevoet F. Hernia. 2013 Luijendijk RW. N Engl J Med. 2000 Deysine M. Surg Clin North Am. 1998

BIOLOGICS

Which material could be salvaged ?

Macroporous Better resistance to infection Less inflammatory response <u>Microporous (ePTFE)</u> The germs do penetrate, but not the macrophages nor the polynuclears

Pauci-filamentous / light

Amid P. Hernia. 1997

Predictors of mesh explantation after incisional hernia repair

Mary T. Hawn, M.D., M.P.H.^{a,b,*}, Stephen H. Gray, M.D., M.S.P.H.^b, Christopher W. Snyder, M.D., M.S.P.H.^b, Laura A. Graham, M.P.H.^a, Kelly R. Finan, M.D., M.S.P.H.^b, Catherine C. Vick, M.S.^a The American Journal of Surgery (2011) 202, 28-33

1071 operations 55 (5.1%) explanations

Mesh Graft Infection Following Abdominal Hernia Repair: Risk Factor Evaluation and Strategies of Mesh Graft Preservation. A Retrospective Analysis of 476 Operations

World J Surg (2010) 34:1702-1709

Stefan Stremitzer • Thomas Bachleitner-Hofmann • Bernhard Gradl • Matthias Gruenbeck • Barbara Bachleitner-Hofmann • Martina Mittlboeck • Michael Bergmann

476 operations, 31 mesh infections 0% PP explanted, 77% PTFE explanted (p<0.0001)

2 opposite situations

Acute infection ≠ late infection

Acute infection

Superficial: Conservative treatment...

ACT QUICKLY TO ENSURE THAT THIS INFECTION REMAINS SUPERFICIAL

- → Early aggressive treatment
- → Revision surgery under general anesthesia
- →Wide surgical debridement,
- ➔ Antibiotic therapy

No minor surgery

Acute infection

Deep: Conservative treatment...

Left iliac incisional hernia

Percutaneous drain placed within the collection + intravenous / irrigation antibiotics

Aguilar BE. *J Lap Adv Surg Tech A.* 2010 Trunzo JA. *Hernia*. 2009

Deep: Conservative treatment...

Percutaneous drainage of deep mesh abscess

Existing literature poor and contradictory

Acute infection

Substantial progress : Negative pressure (wound) therapy (NPT/NPWT)

Accelerating wound healing Increase the formation of granulation tissue

Negative pressure therapy

Median + peristomal incisional hernia

Retro-muscular polyester mesh

Post-operative abscess on the mesh

Uncovered mesh

D30

D60

D80

Tissue integration in progress

RESULT AFTER 10 WEEKS OF NPT

NPT MANAGMENT FOR GROIN HERNIA

Literature is scarce...

Ostomy Wound Manage. 2002 Oct;48(10):40-2, 44-5.

Successful salvage of infected PTFE mesh after ventral hernia repair.

Kercher KW¹, Sing RF, Matthews BD, Heniford BT.

1 patient, 1 success (ePTFE)

Ostomy Wound Manage. 2006 Jan;52(1):52-4.

Negative pressure wound therapy to treat peri-prosthetic methicillin-resistant Staphylococcus aureus infection after incisional herniorrhaphy. A case study and literature review.

Steenvoorde P1, de Roo RA, Oskam J, Neijenhuis P.

1 patient 1 success (rétroM)

Hemia (2012) 16:475-479 DOI 10.1007/s10029-010-0767-8

CASE REPORT

Salvage of an infected titanium mesh in a large incisional ventral hernia using medicinal honey and vacuum-assisted closure: a case report and literature review

G. Chatzoulis · K. Chatzoulis · P. Spyridopoulos · P. Pappas · A. Ploumis

A. P. Tamhankar K. Ravi N. J. Everitt

Department of Surgery, Chesterfield Royal Hospital NHS Foundation Trust, Calow, Chesterfield S44 5BL

Correspondence to: Mr AP Tamhankar

VACUUM ASSISTED CLOSURE® THERAPY IN THE TREATMENT OF MESH INFECTION AFTER HERNIA REPAIR

KEYWORDS: HERNIA, SURGICAL MESH, INFECTION, VACUUM-ASSISTED CLOSURE Surgeon, 1 October 2009, pp. 316-18 1 patient, 1 success (onlay)

4 patients, 4 success

Literature

Hernia (2013) 17:67-73 DOI 10.1007/s10029-012-0969-3

ORIGINAL ARTICLE

Infected large pore meshes may be salvaged by topical negative pressure therapy

F. Berrevoet · A. Vanlander · M. Sainz-Barriga · X. Rogiers · R. Troisi

6-year period
724 consecutive open hernia and incisional hernia repairs
63 (8.7 %) were treated using NPT

54 in retromuscular group → 100 % success
0 in laparoscopic group (38 patients)
9 in intraperitoneal group → 6 (67%) success

Literature

	Feature	N=	Success	Mean Healing time	Follow- up	Rec
Nobaek et al Scan J Surg 2017	Retrosp	48	44 (92%)	110 d	28 m	1 (2%)
Baharestani et al Int Wound J 2010	Retrosp	21	18 (86 %)	66 d	?	0
Stremitzer et al World J Surg 2010	Retrosp	31	17 (55%)	81 d	30 m	0
Berrevoet et al Hernia (2013)	Prosp	63	60 (95%)	38 d	3 у	4 (7%)
Our series	Retrosp	54	49 (91%)	193 d	26 m	7 (14%)
POOLED RESULTS		217	188 (87%)	101.8 d	26 m	6.4 %

Conclusion

- Common agreement that infected mesh must be removed
- In case of acute mesh infection
 - → Conservative treatment must always be considered
 - → Especially for macroporous meshes in retromuscular position
- The best solution may be :
 - →Revision surgery under general anesthesia
 - →Wide surgical debridement
 - →Uncover the mesh in case of deep infection
 - →As soon as possible
 - → The use of Neg. P. therapy may salvage the mesh in 87% of cases

Conclusion

- In case of failure of conservative treatment, the problem is different
 → Chronic mesh infection
 - → Should lead (quickly ?) to the explanation of the mesh

