

XIII e Symposium sur les prothèses pariétales Paris, 16 juin 2017

Meshes in contaminated fields Endoscopically assisted components separation technique (ECST)

Johannes Wegdam Thuis (Helmond, Pays-Bas) Tammo de Vries Reilingh (Helmond, Pays-Bas)

XIII e Symposium sur les prothèses pariétales Paris, 16 juin 2017

Meshes in contaminated fields Endoscopically assisted components separation technique (ECST)

Johannes Wegdam Thuis (Helmond, Pays-Bas) Tammo de Vries Reilingh (Helmond, Pays-Bas)

Disclosure

(potentiel) confict of interest

Bard-Davol Inc.
 TEP en ECST workshop
 Elkerliek Hospital Helmond

Grade 1	Grade 2	Grade 3	Grade 4
Low Risk	Comorbid	Contaminated	Infected
Low risk of	Smoker	Previous wound	Infected mesh
complications	Obese	infection	Septic
No history of	Diabetic	Stoma present	dehiscence
wound infection	 Immunosuppressed 	Violation of GI tract	
	• COPD		

Grade 1	Grade 2	Grade 3	Grade 4
Low Risk	Comorbid	Contaminated	Infected
 Low risk of 	Smoker	Previous wound	Infected mesh
complications	Obese	infection	Septic
 No history of 	Diabetic	Stoma present	dehiscence
wound infection	Immunosuppresse	Violation of GI tract	
	• COPD		

	studie	es Grade 3/4	REC	FU	SSO	ECF
Itani (RICH)	2012 (BIO-strattice)	41/80	28%	24	66%	3%
Zerbib (Lille)	2013 (BIO-strattice)	14	43%	13	57%	0
,	2017 (BIO-Gore-Bio-A)	53/104	17%	24	28%	3%
		Bridging or IPOM = REC ↑				

		studies	Grade 3/4	REC	FU	SSO	ECF
Hodgkinson	2017 Review	16	601	24%	37	46%	10%
				SR, SYN, BIC), ABS	SR, SYN, AB	S, BIO
Itani (RICH)	2012 (BIO-strattice)		41/80	28%	24	66%	3%
Zerbib (Lille)	2013 (BIO-strattice)		14	43%	13	57%	0
Rosen (COBRA)	2017 (BIO-Gore-Bio-A)		53/104	17%	24	28%	3%
			Bridgir	ng or IPOM =	REC ↑		

mens tot mens.

Hernia Referral Center

- 2012
- Volume = Quality
- Definitions
- Regional agreement
- Business case

Hernia Referral Center

Principles CAWR

- Rectus to rectus
- Mesh augmentation
- Component separation

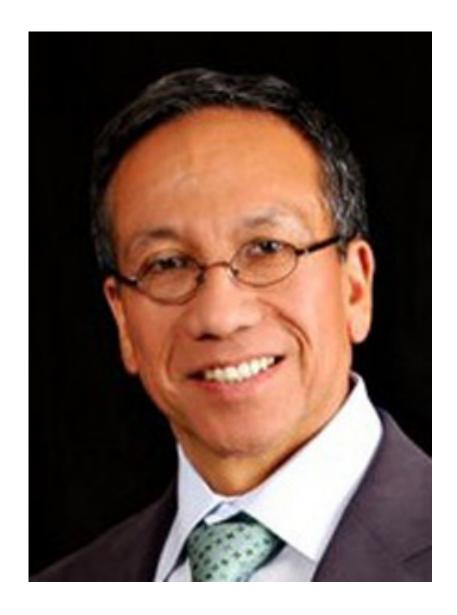
Surgery

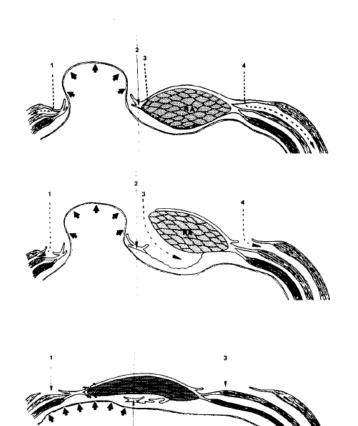
Volume 148, Issue 3, September 2010, Pages 544-558

Original Communication

Incisional ventral hernias: Review of the literature and recommendations regarding the grading and technique of repair

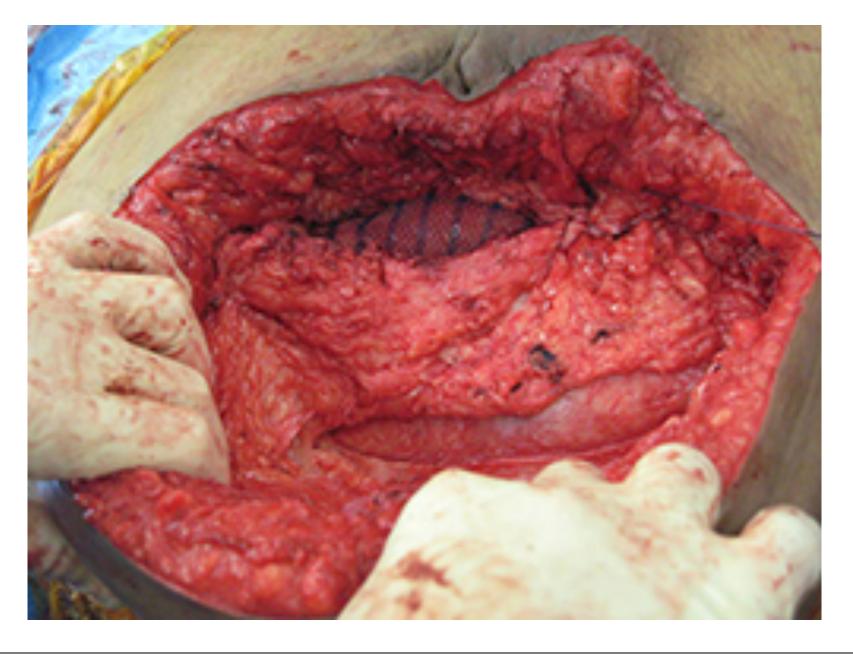
The Ventral Hernia Working Group Karl Breuing, MD^a, Charles E. Butler, MD, FACS^b, Stephen Ferzoco, MD, FACS^a, Michael Franz, MD^c, ♣, ➡, Charles S. Hultman, MD, MBA, FACS^d, Joshua F. Kilbridge^e,

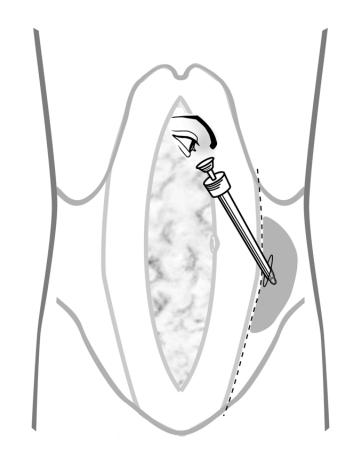


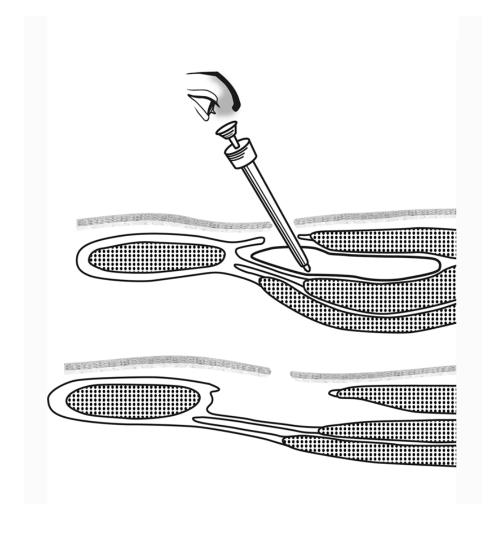


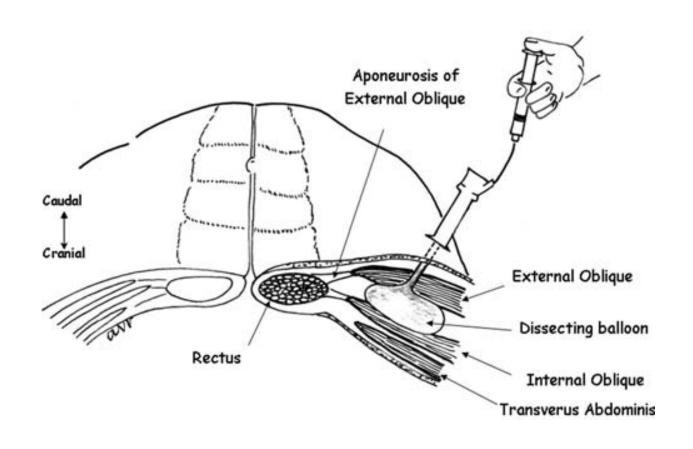
"Components Separation" Method for Closure of Abdominal-Wall Defects: An Anatomic and Clinical Study

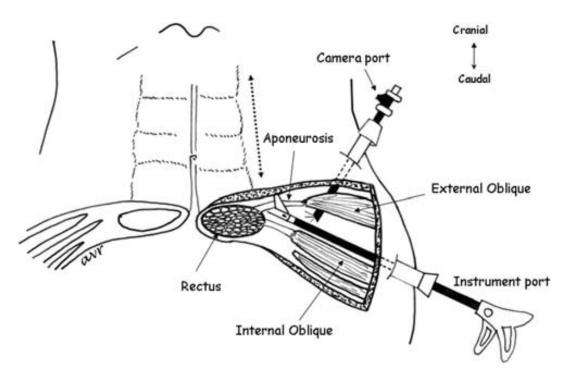
Oscar M. Ramirez, M.D., Ernesto Ruas, M.D., and A. Lee Dellon, M.D. Baltimore, Md.

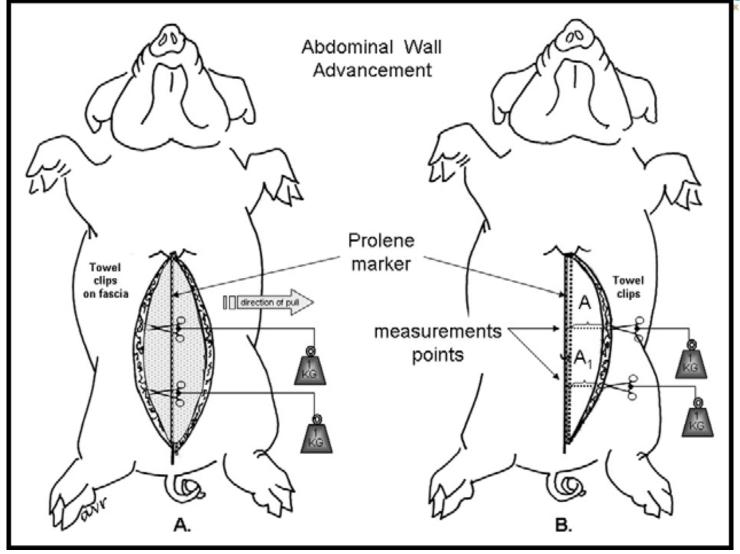








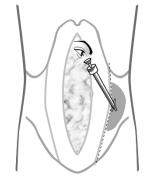



2000 Lowe, Plastic Recon Surg 2002 Maas, TS de Vries Reilingh, JACS

2007, Rosen, Hernia

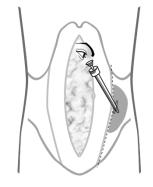
ECST versus CST - Systematic Reviews

		studies	n
Jensen	2014	5	163
Switzer	2015	7	185
Feretis	2015	13	220


ECST > CST (SSO's)

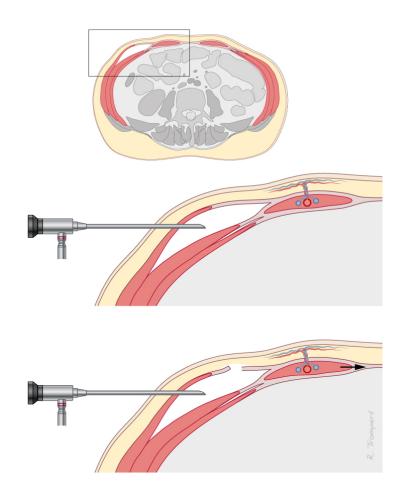
% mesh? type of mesh? Location of the mesh?

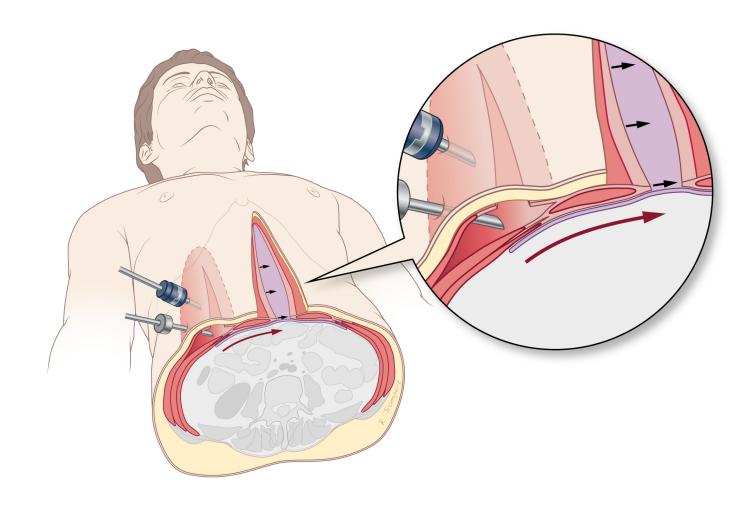
ECST versus CST - Systematic Reviews


	ECST	CST
SSO	18%	43%
SSI	6%	13%
Recurrence	13%	16%
LoS	5-8	5-11 days

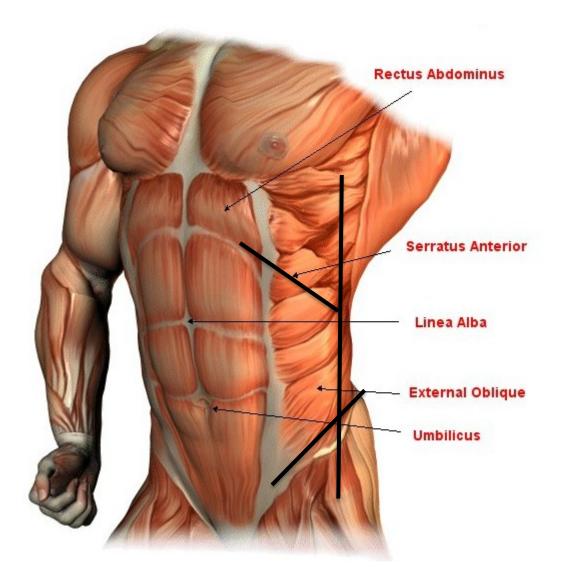
Jensen et al. Surg Endo 2014

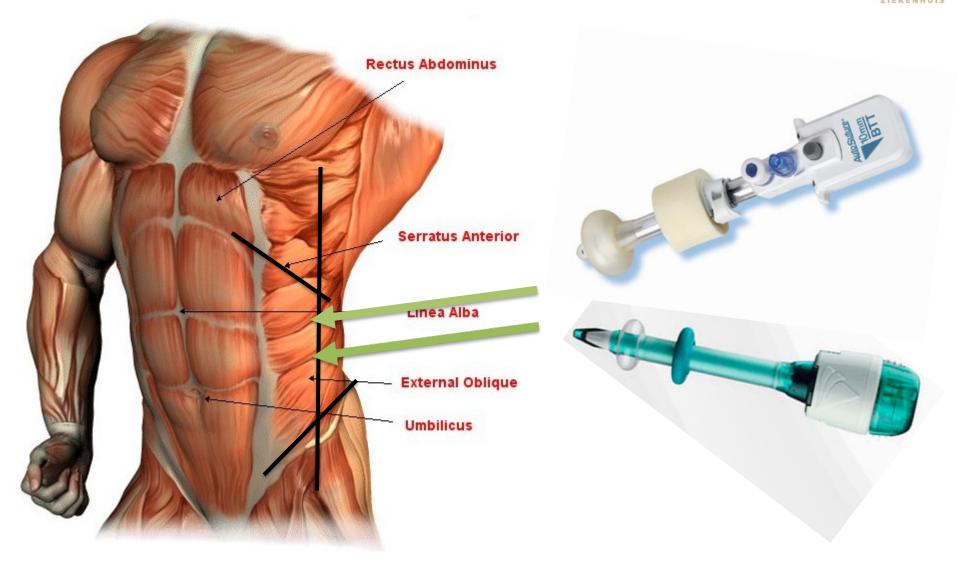
ECST versus CST - Systematic Reviews

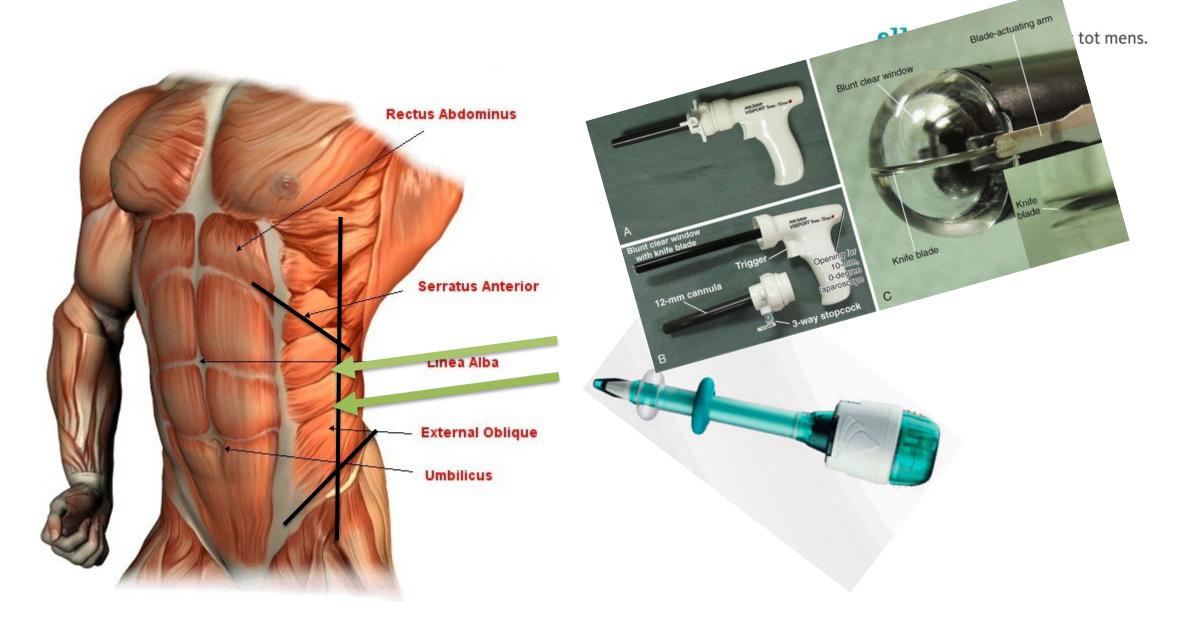


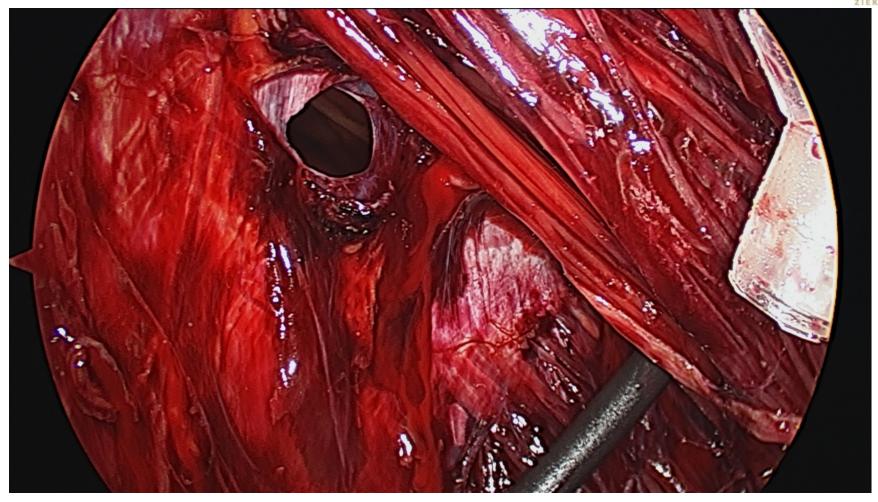

	ECST	CST
SSO	18%	43%
SSI	6%	13%
Recurrence	13%	16%
LoS	5-8	5-11 days

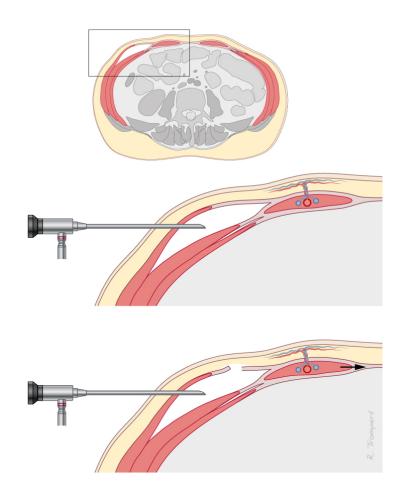
Jensen et al. Surg Endo 2014

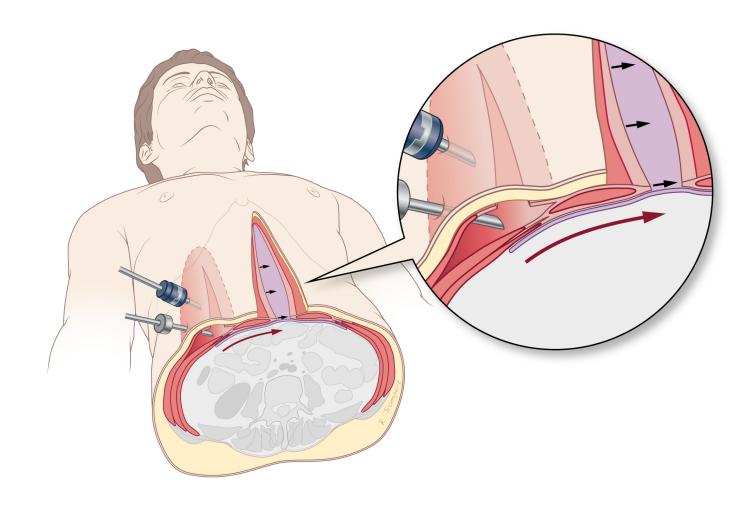




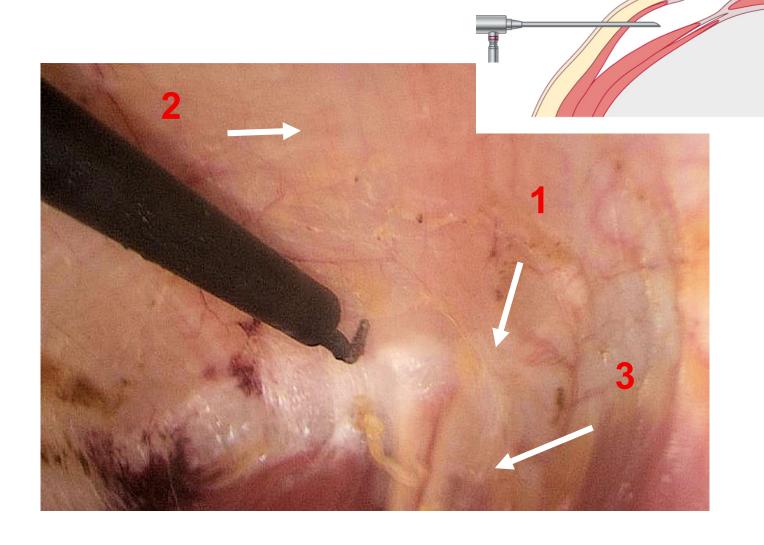


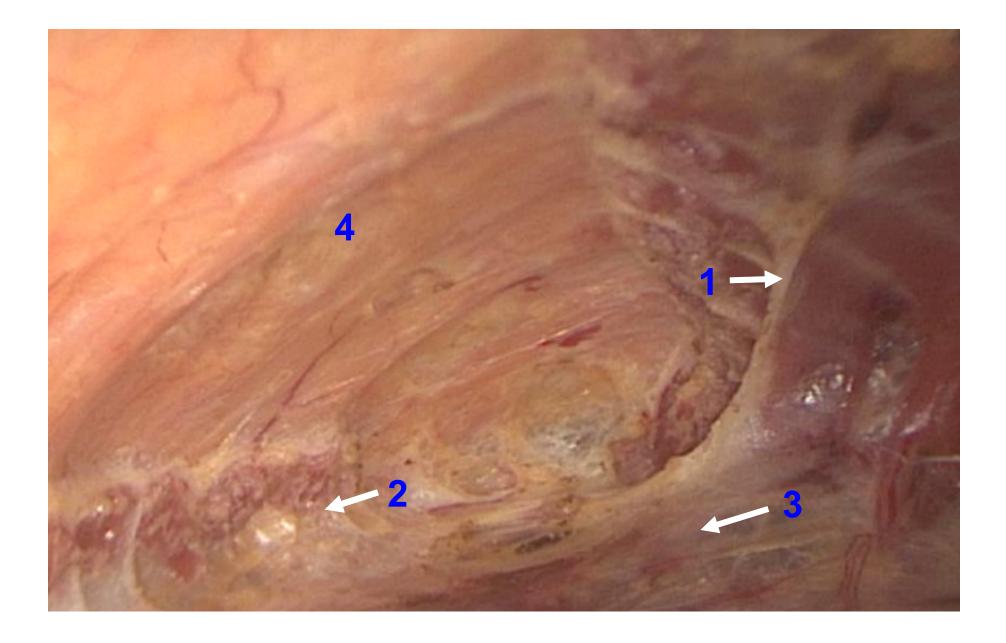




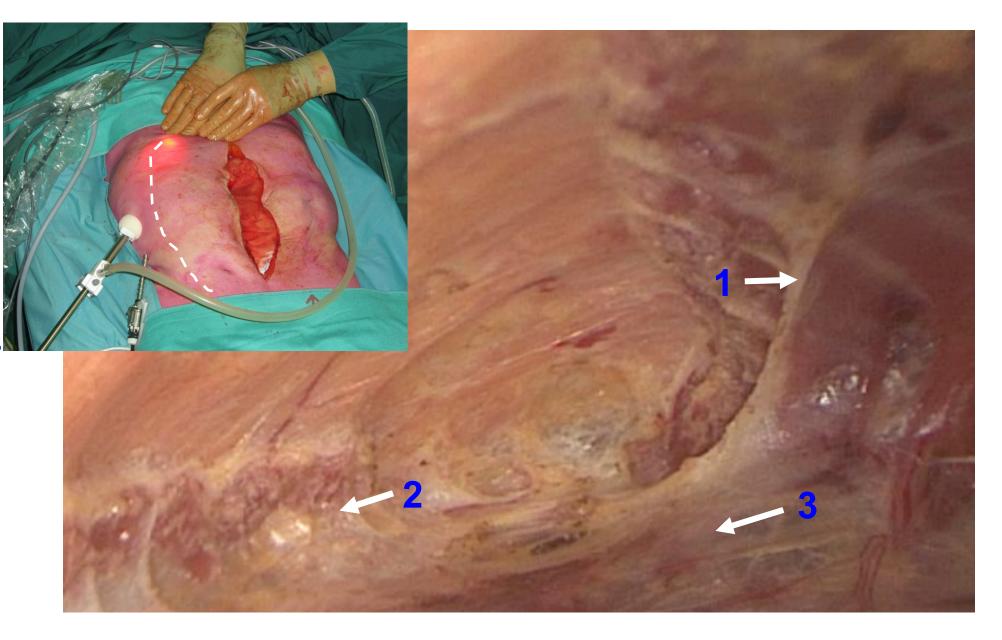








- Aponeurosis rectus fascia
- **External Oblique** Muscle
- **Internal Oblique** Muscle



- 1. Aponeurosis rectus fascia
- External Oblique Muscle
- 3. Internal Oblique Muscle
- 4. Subcutaneous Tissue

- 1. Aponeurosis rectus fascia
- External Oblique Muscle
- Internal Oblique Muscle

4. Subcutaneous Tissue

Tips and Tricks ECST

- Patient selection
- Stoma presence
- Positioning of the patient / no shells
- Two monitors
- Small incision lateral / Visiport
- Right plane
- Big endoscopic pocket
- Bleeding ventral of the costa

Tips and Tricks ECST

- Patient selection
- Stoma presence
- Positioning of the patient / no shells
- Two monitors
- Small incision lateral / Visiport
- Right plane
- Big endoscopic pocket
- Bleeding ventral of the costa

Hernia

DOI 10.1007/s10029-016-1485-7

ORIGINAL ARTICLE

How to perform the endoscopically assisted components separation technique (ECST) for large ventral hernia repair

E. H. H. Mommers^{1,2} · J. A. Wegdam¹ · S. W. Nienhuijs² · T. S. de Vries Reilingh¹

Clinical Quality Improvement Programme

Database

Evaluation of ECST with IPOM (2012-2013)

Clinical Quality Improvement Programme

Database

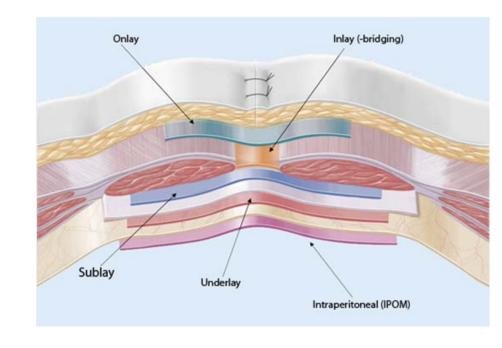
Evaluation of ECST with IPOM (2012-2013)

JOURNAL OF SURGICAL RESEARCH • MAY 2017 (211) 8-13

Impact of hernia volume on pulmonary complications following complex hernia repair

Elwin H.H. Mommers, MD, ^{a,b,*} Johannes A. Wegdam, MD, ^a Sander van der Wolk, MD, ^c Simon W. Nienhuijs, MD, PhD, ^d and Tammo S. de Vries Reilingh, MD, PhD^a

^a Department of Surgery, Elkerliek Hospital, Helmond, The Netherlands


^bDepartment of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands

^cDepartment of Radiology, Elkerliek Hospital, Helmond, The Netherlands

^d Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands

IPOM (2012-2013) to Sublay (2014-2016)
Multidisciplinary approach
Patient selection

Multidisciplinary approach

Started 2014

- Surgeon (Catharina Hospital, Elkerliek hospital)
- Anesthesiologist
- Pulmonologist
- Intensive care doctor
- Dietician
- Physiotherapist
- Case manager

- Database
- Clinical Quality Improvement Programme
- Evaluation of IPOM (2012-2013) & Sublay (2014-2016)
 - SSO's
 - Recurrence
 - Medical complications

Patients 2012-2016

Preoperative Variable	IPOM (2012-2013)	Sublay (2014-2016)	Total
	N=22	N=26	N=48
Age Male	62 64%	59 65%	61 (34-83) 31 (65%)
Comorbidity BMI	37% 27	54% 29	22 (46%) 28
Hernia Size (cm2) Stoma present	180 18%	150 12%	165±80 7 (15%)
VHWG classification 2012 1 (low grade) 2 (comorbid) 3 (contaminated)	0 82% 18%	0 85% 15%	0 40 (83%) 8 (17%)

Intra operative characteristics	IPOM (2012-2013)	Sublay (2014-2016)	P (<0.05)
	n=22	n=26	
SSO	8 (36%)	5 (19%)	NS
Recurrence	2(9%)	1(4%)	NS
All medical complications Cardiovascular Pulmonary embolism Pneumonia Gastro-intestinal	17 (77%) 4 4 2 8	10 (39%) 3 0 4 3	0.007 NS 0.04 NS 0.04
Follow up (mo)	15	3	

Intra operative characteristics	IPOM (2012-2013)	Sublay (2014-2016)	P (<0.05)
	n=22	n=26	
SSO	8 (36%)	5 (19%)	NS
Recurrence	2(9%)	1(4%)	NS
All medical complications Cardiovascular Pulmonary embolism Pneumonia Gastro-intestinal	17 (77%) 4 4 2 8	10 (39%) 3 0 4 3	0.007 NS 0.04 NS 0.04
Follow up (mo)	15	3	

Intra operative characteristics	IPOM (2012-2013)	Sublay (2014-2016)	P (<0.05)
	n=22	n=26	
SSO	8 (36%)	5 (19%)	NS
Recurrence	2(9%)	1(4%)	NS
All medical complications Cardiovascular Pulmonary embolism Pneumonia Gastro-intestinal	17 (77%) 4 4 2 8	10 (39%) 3 0 4 3	0.007 NS 0.04 NS 0.04
Follow up (mo)	15	3	

Intra operative characteristics	IPOM (2012-2013)	Sublay (2014-2016)	P (<0.05)
	n=22	n=26	
SSO	8 (36%)	5 (19%)	NS
Recurrence	2(9%)	1(4%)	NS
All medical complications	17 (77%)	10 (39%)	0.007
Cardiovascular	4	3	NS
Pulmonary embolism	4	0	0.04
Pneumonia	2	4	NS
Gastro-intestinal	8	3	0.04
Follow up (mo)	15	3	

Conclusion

ECST is a minimal invasive, well established technique

Conclusion

ECST is a minimal invasive, well established technique also in contaminated fields

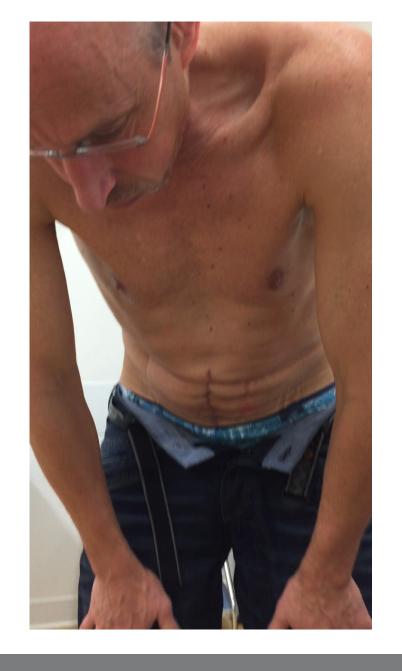
Conclusion

ECST is a minimal invasive, well established technique also in contaminated fields that should be in the armatarium of every complex hernia surgeon

CAWR:

Volume
Centralisation
Experience
ECST,
multidisciplinary team
and

Clinical Quality Improvement Programme reduces medical complications and improves quality



Tibetan Yoga Teacher

Internal bodymassage (Naule Kya) to clean intestines and prevent diseases

Medical complications underexposed

	Lowe 2000	Harth 2010	Giurgius 2012	Ghali 2012	Itani (RICH study) 2012	Fox 2013	Rosen (COBRA study) 2017	Elkerliek 2016
	ECST	ECST	ECST	MICS	Open VIH Primary closure/ bridging	Laparoscopic	Contaminated Biosynthethic mesh	ECST
Subjects	7	22	21	57	85	18	104	26
Recurrence	14%	27%	5%	4%	27%	17%	17%	4%
SSO	0%	27%	19%	14%	35%	6%	54%	19%
Medical complications	43%	42%	?	?	?	?	?	39%

Meshes in contaminated fields

Grade 1	Grade 2	Grade 3	Grade 4
Low Risk	Comorbid	Contaminated	Infected
 Low risk of 	Smoker	Previous wound	Infected mesh
complications	Obese	infection	Septic
 No history of 	Diabetic	Stoma present	dehiscence
wound infection	Immunosuppressed	Violation of GI tract	
	0000		

	Phasix US Study	COBRA* Study (BioA)	(Sttratice)
Follow-up	18 month	24 month	24 month
Number of subjects	121	104	80
Hernia Recurrence	9%	17%	28%
Surgical Site Infection	9%	18%	35%
Seroma	6%	3%	6%

REFERENCES:

- 1. Rosen M, et al (2017) Annals of Surgery 265:205-211.
- Itani KM, et al (2012) Surgery 152:498-505.

NOTE: Naïve Indirect Comparisons, like this one, have equivalent evidence to that of observational studies.

Endoscopic assisted ** mens tot mens. Components Separation Technique

- 2012-2016
- 49 patients
- IPOM (Ventralight ST mesh) vs retromuscular (Soft Tissue mesh or Phasix mesh)
- 23 vs 26 patients
- Male 60%
- Mean age 65
- Mean BMI 28
- 53% co-morbidity
- 10% contaminated wounds
- Defect 182±60 cm²

Endoscopic assisted ** mens tot mens Components Separation Technique

- Mean operation time 146±60 minutes
- Mean hospital stay: 6.5 days
- SSO: 16%
- Cardiopulmonary and GI complications 48% vs 15% (p 0.03)
- Mean follow-up: 9 (0-44) months
- Recurrence: 3 patients (2 after IPOM) (6%)

